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Photonic CAD Matures

Dominic Gallagher, Photon Design

Introduction

While electronics has enjoyed quite sophisticated computer based
simulation and design tools for decades, only 15 years ago there were
virtually no professional commercial tools for the photonics design-
er and most R&D laboratories were writing their own codes for each
specific application. Things have moved a long way since those days
and now there is a good choice of tools available to the designer.
Nevertheless, in many ways photonic modelling still poses signifi-
cant challenges due in part to the much larger variety of technolo-
gies employed in photonics compared to electronic circuits and there
exists no photonic simulation algorithm or even commercial tool
that is able to model every sort of photonic circuit. This article aims
to give the reader an introduction to the main algorithms of use in
photonics modelling, to highlight their strengths and weaknesses
and discuss where photonics CAD is going next.

Passive Device Algorithms
This article will focus largely on the techniques for modelling pas-
sive photonic devices, where light is propagating in a medium
whose refractive index is constant or is at most somewhat depend-
ent on the intensity of the light propagating — (so called non-lin-
ear media). Active devices, where light interacts with electrons,
play an important part in modern photonics in LEDs, laser diodes
and the like but cannot be discussed in depth here for lack of space.
A wide variety of algorithms have been developed for the
simulation of passive photonic devices, though only a few have

Table 1: Beam Propagation Method

achieved it to mainstream use. We will cover the following
mainstream algorithms here in detail:

BPM - Beam Propagation Method

EME - Eigenmode Expansion Methods

FDTD - Finite Difference Time Domain

We will discuss the strengths and weaknesses of each
method and give the reader some helpful information on
choosing an appropriate tool for a given task.

Scoring an Algorithm

The ideal algorithm would score well in all of the following aspects:

* speed — obvious but crucial for efficient design work

e low memory usage — no point if the simulation doesn't fit
in your computer

* numerical aperture — the range of angles that can be accu-
rately propagated. Ideally the algorithm would be com-
pletely agnostic to angle.

* An - the refractive index contrasts in the device. Ideally the
algorithm would deal well with any contrast — Si to air is ~2.5.

® polarisation — it should model all polarisations of light
equally well.

® lossy materials — it should be able to model absorbing
materials, even metals

* reflections — can it deal with reflections in the device?

* non-linearity — it should be able to model non-linear mate-
rials such as Kerr effect.

Aspect Performance Score/10
Speed FD-BPM scales linearly with area and can take fairly long steps in -
propagation direction
Memory Usage scales linearly with c/s area -
NA Best with low NA simulations. Versions using Pade approximants 4
can model a beam travelling at a large angle but still cannot deal
well with light simultaneously travelling at a wide range of angles.
An Best with low An simulations. 5
Polarisation Semi-vectorial versions work best. Still problems modelling mixed 5
or rotating polarisation structures accurately
Lossy Can model modest losses efficiently. Most versions cannot deal 7
materials well with metals
Reflections Some success in implementing reflecting/bi-directional BPM but 3
generally avoided due to low speed and stability problems
Non-linearity FD-BPM can model non-linearity. 9
Dispersive Being a frequency-domain algorithm this is easy 10
Geometries The BPM grid allows diffuse structures to be modelled easily. 7
Problems modelling non-rectangular structures accurately on the
rectangular grid
ABCs PMLs available and work well 9
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* dispersive materials — it should be able to model structures
where the refractive index is varying with wavelength.

¢ arbitrary geometries — some algorithms can model circular
structures well, others rectangular. The ideal algorithm
would model all geometries equally well.

* ABCs - a good algorithm should be capable of implement-
ing an absorbing boundary condition such as the PML to
absorb light hitting the boundaries of the computation
domain.

We will judge our contenders against these criteria.

The Beam Propagation Method (BPM)

This is perhaps the first widely used algorithm and remains
today a workhorse for the industry. There are two main vari-
ants of the algorithm, the so called FT-BPM (Fourier
Transform-BPM) and the FD-BPM (Finite Difference-BPM).
BPM is an axial algorithm in that it assumes that the light
is travelling more or less in one direction. Newer so called
wide-angle BPM algorithms significantly improve accuracy
for off-axis propagation. First BPM algorithms were scalar in
that they ignored the polarisation of light. These were fol-
lowed by algorithms that could model TE-like and TM-like
polarisations successfully and the newest algorithms have

Table 2. Eigenmode Expansion Methods

some success at modelling light of arbitrary and changing
polarisation.

The key idea of BPM is to remove the fast varying term
exp(le)Z)from the fields (where ,3 is some characteristic
propagation constant) and then to solve the now slower

Figure 1 Modelling an MMI using EME. Within each section the
fields are represented as a sum of local modes. Coupling between
modes occurs only at the interfaces. The MMI can be decomposed
into 5 simpler s-matrices as shown, so that even if one changes
you can re-use the others, saving much time when doing a set of
similar simulations.

Aspect Performance Score/10
Speed EME scales poorly with cross-section area — as A3 (A is c/s area). -
However it can efficiently model very long structures especially if
their cross-section changes only slowly or occasionally. Periodic
structures scale as log(number of periods) — so can compute
efficiently. S-matrix approach allows a set of similar simulations to
be done very quickly — parts of previous calculation can be
reused.
Memory Memory increases at rate between A% and A% (A is c/s area), but -
very efficient for long or periodic devices.
NA Can model wide-angle beams by increasing the number of modes 7
in the basis set at expense of speed and memory.
Delta-n Rigorous Maxwell Solver can accurately model high delta-n 8
Polarisation Rigorous Maxwell Solver is polarisation agnostic 10
Lossy Depends on mode solver used. 7
materials
Reflections Yes — easy and stable even when there are many reflecting 10
interfaces.
Non-linearity Difficult — have to iterate, and then only modest non-linearity 3
levels will converge
Dispersive Being a frequency-domain algorithm this is easy 10
Geometries Depends on the mode solver used. Can use different structure 7
discretisations in different cross-sections, so solver can better
adapt to the geometry.
ABCs Depends on the mode solver used. E.g. a finite-difference solver 7
can be readily constructed to implement PMLs. However, PML'’s
are more difficult to use with EME than with BPM or FDTD.
February 2008 IEEE LEOS NEWSLETTER 9
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Figure 2: The Yee cell of FDTD, showing the position of the 6 EM
fields on the cell surface. This staggered grid makes the algorithm
more accurate.

Figure 3 A photonic crystals laser oscillating in a “Littrow” mode;
simulated using CrystalWaves active FDTD algorithm which cou-
ples the light to the electron population of the lasers active region.

varying fields. It works well for modelling waveguide
components such as tapers and y-junctions especially with
modest An (refractive-index contrast). It struggles to give
accurate results for silicon nanowire technologies, where
both An is high and, because of tight confinement the
light is effectively travelling at a large range of angles
from the device axis.

Table 1 summarises different aspects of BPM performance,
with scores out of 10 for each aspect. Speed and memory per-
formance are not given scores since these depend too much on
the application — BPM might be fastest for one application
and FDTD for another.

Eigenmode Expansion Methods (EME)
This term covers a variety of algorithms that decompose the
electromagnetic fields in terms of a sum of local eigenmodes.
Bidirectional eigenmode propagation (BEP) has been widely
developed by our company into a viable alternative to the
BPM algorithm and provides several advantages for certain
applications. We will discuss here the BEP variant.

The principle of EME can be encapsulated in the following
equation for the propagation of light in a waveguide (i.e. that

is not varying in the z-direction):
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are the amplitudes of
the mode in the +z and —z directions respectively. Having an
expansion in terms of a complete set of modes permits one to
write a scattering matrix for any component in the form:
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where uy, and vy, are the vector of amplitudes of the modes

entering and exiting (respectively) the left hand side. These few

equations immediately illustrate some useful features of EME:
® it is fully bi-directional; in fact it can be made almost
omni-directional if sufficient modes are used.

¢ it is a fully vectorial algorithm, making no approximations
of the polarisation of the light.

* it is a rigorous solution to Maxwell's Equations; the main
approximation being the finite number of modes used.

*  The scattering matrix approach means that you solve the problem
for all inputs simultaneously, so you can for example get the
response for both TE and TM polarisations in one go. It also allows
you to divide a large circuit into multiple parts and then re-use the
s-matrix of the parts again potentially saving a lot of time.

Tt allows efficient modelling of periodic or repeating struc-
tures since one can evaluate the s-matrix of one period and
then re-use it.

Table 2 summerizes various aspects of EME methods.

The Finite-Difference
Time Domain (FDTD) Algorithm
This is perhaps now the most widely used algorithm for the
solution of Maxwell’s Equations. It is a brute force finite-differ-
ence discretisation of Maxwell’s Equations in time and space. In
principle it can model virtually anything, given enough com-
puting power. It is also very simple to implement — the basic
algorithm can be written in 30 lines of code.

The dominant FDTD algorithm dates back to Kane Yee in
1966 but variants with e.g. triangular grids have appeared more
recently. Table 3 summerizes FDTD aspects.

Comparing BPM, EME, FDTD
The score tables given above do not of course tell the whole
story. The following “applicability diagrams” show graphical-
ly how the three algorithms fair in response to varying numer-
ical aperture, cross-section and length.

Figure 4 shows how the FDTD, BPM and EME algo-
rithms fare with varying An and device length. FDTD due
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to its small grid size cannot do very long things. However Figure 5 shows how the FDTD, BPM and EME algorithms

it can deal with high An structures. BPM can do much fare with varying numerical aperture (range of angles) and
longer things but cannot deal well with high An struc- cross-section size. FD-BPM can cope with the largest cross-sec-
tures. EME can model the longest structures such as a fibre tion sizes due to its order-N algorithm, but cannot cope well

taper efficiently and can also deal with high An devices with light travelling at a wide range of angles. FDTD can do
accurately. omnidirectional simulations (large NA), but smaller cross-sec-

Table 3. Finite Difference Time Domain

Aspect Performance Score/10

Speed Scales as V (device volume) but grid size is small so not as good as BPM or EME -
for long devices.

Memory Scales as V (device volume) but grid size is small so not as good as BPM or EME -
for long devices.

NA Omni-directional algorithm is agnostic to direction of light — great when light is 10
travelling in all directions

Delta-n Rigorous Maxwell solver, happy with high delta-n, but slows down somewhat with 9
high index.

Polarisation Rigorous Maxwell Solver is polarisation agnostic 10

Lossy Can model even metals accurately with a fine enough grid and

materials small modifications to the algorithm.

Reflections Yes — easy and stable even when there are many reflecting 10
interfaces.

Non-linearity Yes — non-linear algorithm relatively easy to do

Dispersive Have to approximate the dispersion spectrum with one or more 7
Lorentizans but exact fit to the spectrum over a wide wavelength
is difficult and the algorithm also slows down.

Geometries Fine rectangular grid can do arbitrary geometries easily, though 8
there are problems approximating diagonal metal surfaces

ABCs Yes — very effective and easy to use 9

10Gbps Compact Optical Sources and Receivers

These compact and high-performance stand-alone units provide cost-effective
and versatile solutions for your high-speed measurement requirements.

_850nm VCSEL Source | Min | Nominal | Max |
Wavelength (nm) | 840 | 850 | 860 |
_ Bit Rate (Gbps) | | 10 | 125 |
_Output Power (mW) | 10 || 12 | 14 |
_ Bias Current (mA) [ 7 ] 9 | 12
- 850nm VCSEL Source _Rise/ Fall Time (ps) | | 30145 | _
- 1310nm and 1550nm EML Sources (Photo) _Modulating Amplitude (mV) | 300 | 400 | 600 |
- Boradband and Narrow-band Receivers _Extinetion Ratio | |45 | 6
- Limiting Amplifier 10G VCSEL Link Eye Diagram
- Encircled Flux Measurement System
For additional information please contact:
Sl 3 i Califoria Scientific is a manufacturer of
CSI california Scientific, Inc. gk T optoelectronic test equi
Telephone: (408) 247-9660 based in San Jose, California

e-mail: infol@californiascientific.com www.californiascientific.com
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Figure 6 Improved meshes for BPM. A mesh (black) able to conform
to the structure (green) substantially improves accuracy.
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tions than BPM due to its fine grid.
EME can do high NA or large cross-sec-
tion but not both, since high NA and
large sections both require one to
increase the number of modes used and
this number would become impractical.

Evolving BPM

Despite its age, significant advances are
still being made in the BPM algorithm.
For example in recent times, the effi-
cient ADI technique has been combined
with Pade approximation methods to
significantly speed up the speed of com-
putation at some expense of accuracy
and even this accuracy cost has now been
reduced substantially. Hadley, responsi-
ble for the original Pade modifications
of BPM, has demonstrated work on
slanted meshes that are able to conform
to the boundaries of the structure — see
Figure 6. Many other workers are still
actively engaged in developing BPM
further.

Evolving FDTD

One of FDTD’s big limitations is it’s reg-
ular rectangular grid. This means that
one is limited to using the same resolu-
tion everywhere, unlike a finite element
algorithm which can reduce the resolu-
tion locally and also allow the grid to fol-
low the contours of a structure. One solu-
tion to this is sub-gridding which we
have implemented in our own FDTD
tools — see Figure 7. The sub-gridding
can be cascaded so that you could have
1/4, 1/8 or smaller local grids. For a 3D
simulation, using a 1/4 subgrid over a
small part of your structure can increase
the speed of the simulation by up to 64
times over a uniform grid. The challenge
however in sub-gridding is to prevent
artificial reflections occurring at the

boundaries of the sub grid and main grid. However we have
recently demonstrated algorithms that exhibit reflections below
108 effectively eliminating this problem — see Figure 7.

Another promising alternative to the FDTD algorithm is
the so-called pseudo-spectral time domain method (PSTD).
The structure is broken down into sub-domains of uniform
index so that the domains follow the boundaries of the device
as shown in Figure 8. Within each domain the fields are rep-
resented by expanding in an appropriate basis set ¢, typical-
ly Chebyschev polynomials

N

u)= Y,

n=0
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Figure 7 (left) scheme for sub-gridding FDTD, allowing additional resolution where needed; (right) different interpolating schemes for

stitching sub-grids to main grid.

The method allows a varying grid size and conformation to
curved surfaces and is ideal for circular or spherical metal
objects where FDTD struggles.

Photonic ICs - the next stage

EME and associated scattering-matrix algorithms are ideal for
the next level in photonics CAD — modelling not just indi-
vidual components but whole circuits of components. Once a
scattering matrix for a linear component has been evaluated
then any signal can be propagated through the device.
However active components can not be easily modelled using
frequency domain algorithms and a circuit including active
elements must be simulated in the time domain. A powerful
technique for doing this is the so called time domain travel-
ling wave (TDTW) algorithm, which we have pioneered over
a number of years and have now developed into a flexible pho-
tonic circuit simulator .

The basis of the algorithm is beautifully simple. We
assume that light is travelling forward or backward along a
waveguide. We then remove the fast changing part =0
leave forward A(z) and backward B(z) fields that vary slowly in
both time and space. We can then write the advection equa-
tions for these fields as follows:

i i
L& Y R BTN
v, df oz '

2

195 95 jkA+(g-jd)B+E,N,)

v, ot oz T T T t

grating feedback gain  detuning

This can be solved in the time domain rather like FDTD
but now with much larger time and space steps because we
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Figure 8 Discretisation of a square in a circular in a rhombus for
the Chebyshev method. The grid follows the structure, giving better
performance.

have removed the fast varying parts. The cost is of course that
it can only model fields propagating in +z or —z directions.
However just like FDTD it can propagate many wavelengths
at a time. Noise sources such as from spontaneous emission
can be readily supported and propagated through the circuit
by setting the forcing terms F in the previous equation.

We illustrate the flexibility of the approach by the simula-
tion of an all-optical 2R regenerator . The circuit is shown
schematically in Figure 9. It consists of a Mach-Zehnder inter-
ferometer with an SOA in each arm. Blue rectangles are wave-
guides and green rectangles are power splitters/combiners.
Figure 10 shows the input to the regenerator — with a slow rise
time, on/off ratio of just 5 and amplitude of ImW. On the
right is the regenerated signal, with >20mW signal, on/off
ratio of >30:1 and improved timing. The increased noise is

IEEE LEOS NEWSLETTER 13
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due to the spontaneous emission in the SOAs illustrating the
power of the algorithm to realistically model real devices.

Where to next?

The perfect algorithm has yet to be written. In fact it never will
— there will always be one algorithm better for one application
and another for a different one. Thus we are likely to see
increasing development of multi-algorithm simulation tools
that use different algorithms for different parts of a simulation,
perhaps even automatically.

Will photonics ever see the existence of tools equivalent to
those in electronics that can accurately and readily model millions
of transistors? Probably not — photonics uses a much more diverse
range of technologies than electronics and the market is much
smaller, but certainly we are likely to see some great improvements
in the usability, speed and accuracy of photonics CAD in the next
few years, as the photonics IC becomes established.
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